
Gradual Structure Editing with Obligations
David Moon

University of Michigan
Ann Arbor, MI, USA

dmoo@umich.edu

Andrew Blinn
University of Michigan
Ann Arbor, MI, USA
blinnand@umich.edu

Cyrus Omar
University of Michigan
Ann Arbor, MI, USA

comar@umich.edu

Abstract—Structure editors have long promised to facilitate
a continuous dialogue between programmer and system—one
uninterrupted by syntax errors, such that vital program analyses
and editor services are always available. Unfortunately, structure
editors are notoriously slow or difficult to use, particularly
when it comes to modifying existing code. Prior designs often
struggle to resolve the tension between maintaining a program’s
hierarchical structure and supporting the editing affordances
expected of its linear projection. We propose the paradigm
of gradual structure editing, which mitigates this tension by
allowing for temporary disassembly of hierarchical structures as
needed for text-like editing, while scaffolding these interactions by
generating syntactic obligations that, once discharged, guarantee
proper reassembly.

This paper contributes the design and evaluation of a gradual
structure editor called teen tylr. We conducted a lab study
comparing teen tylr to a text editor and a traditional structure
editor on structurally complex program editing tasks, and found
that teen tylr helped resolve most usability problems we iden-
tified in prior work, though not all, while achieving competitive
performance with text editing on most tasks. We conclude with
a discussion of teen tylr’s remaining limitations and design
implications for future code editors and parsers.

I. INTRODUCTION

Programming is cognitively demanding, so novices and
experts alike rely on various editor services to help them
understand, navigate, and modify programs. Often specific to
the programming language, these services form a conversation
between language and tool designers on the one hand, and
programmers on the other, with each group preferring their
own representation of the authored code. Language designers
model programs as hierarchical tree structures, which enables
compact specification of program analyses and transformations.
Meanwhile, programmers typically read and write programs
displayed as linearly sequenced text, decorated with secondary
notation (e.g. colors, block outlines, type errors, etc), which
lets them capitalize on their literacy and keyboard skills.

When an editor presents programs as decorated text, it is
natural to expect it to offer standard text editing affordances.
Text editing challenges editor service design, however, as the
system is left to parse the text resulting from each edit to
determine a corresponding tree structure for subsequent analysis.
Many text editor states fail to parse, creating gaps in the
availability of downstream services [1].

Due to this “gap problem”, there has been a long and storied
line of research on structure editors (a.k.a. projectional editors),
which maintain a tree-structured, rather than textual, editor
state, with holes standing for missing terms (i.e. sub-trees).

The programmer interacts with a projection of this editor state,
which specifies how the code is presented and offers appropriate
editing affordances. The choice of projection varies widely—
from the bright drag-and-droppable blocks of Scratch [2] to the
keyboard-driven text-like interface of JetBrains MPS [3]—but
all projections restrict user interactions to simple operations
on the underlying tree, which ensures that the edit state is
continuously well-structured and amenable to analysis. On
the other hand, these restrictions can be in tension with the
linearized projection and its suggested affordances, leading
many [4–14] to report a highly viscous [15] editing experience,
i.e. it can be cumbersome to modify existing code.

Concretely, let us consider the violin plots in Fig. 1
reproduced from a study comparing text editing to MPS,
the state-of-the-art in keyboard-driven structure editing [16].
The left two plots in Fig. 1 show that, after the 90-minute
study, MPS novices felt that selection was relatively slow and
inaccurate. The viscosity here is caused by what we call the
selection expressivity problem, namely that selections must
cleave to whole terms. It is impossible to select portions of a
term, or for selections to span across term boundaries, even
when the intended tokens are visually adjacent. For example,
in 2 * 3 + 4, it is impossible to select 3 + 4 or + 4. Novices,
in particular, may find it difficult to “see” the invisible term
boundaries that restrict selection.

Meanwhile, the right two plots in Fig. 1 show that both MPS
novices and experts struggled to predict the effects of deletion
operations, which can be suprisingly destructive in the name
of maintaining strict tree structure. We construe this overall

Fig. 1: Violin plots of post-task questionnaire responses from
a controlled user study of MPS, adapted from [16]. Each plot
partitions the responses across the three study groups: MPS
novices (Proj), MPS experts (ProjE), and text editor users (Par).

Fig. 2: A high-level schematic of the concepts of tile-based
editing, this paper’s realization of gradual structure editing.

phenomenon as the combination of two distinct problems.
First, the delimiter matching problem arises from the

constraint that all keywords or symbols from the projection
of a term (which we refer to as its matching delimiters) are
inserted and deleted together. Matching delimiters may be
visually distant from one another due to intervening children,
leading to a sort of “spooky action at a distance” and making
edits that amount to repositioning or changing an individual
delimiter difficult. For example, in a text editor one can go
from f(2 * 3) + 4 to f(2 * 3 + 4) by deleting (or cutting)
the closing parenthesis and inserting (or pasting) it after 4,
whereas in MPS, deleting the closing parenthesis also deletes
the matching opening parenthesis (and the function argument,
which brings us to the next problem).

The second source of over-deletion, which we refer to as
the multiplicity problem, arises from the fact that in a text
editor, terms can appear transiently adjacent to one another,
e.g. deleting the + in 2 + 3 leaves 2 3, whereas in a structure
editor, deletion must leave behind either a hole, i.e. zero terms,
or one term. Consequently, MPS deletes not just the + character
but also all but at most one of its child operands, leading to
behavior that is difficult even for experts to predict.

We propose a new paradigm for structured code editing,
called gradual structure editing, that aims to resolves these
three problems. The organizing principle is to permit local
disassembly of hierarchically-structured terms to their projected
components as needed to resolve the selection expressivity
problem, as well as insert and delete these components
individually. After each change, the system analyzes the locally
linear structure to generate a set of syntactic obligations
that, once discharged, guarantee reassembly to a complete
term. Syntactic obligations generalize holes, which can be
understood as obligating term insertion, to include matching-
and multiplicity-related obligations.

We call this paper’s particular realization of gradual struc-
ture editing tile-based editing, because disassembly proceeds
through three distinct strata—terms, tiles, and shards, ordered
high to low as depicted in Fig. 2 and detailed in Sec. III.
Disassembly to lower structures occurs when the user’s
selection boundaries cut across the linear span of the higher

structure, thereby addressing the selection expressivity problem.
For example, the depicted selection (2 + 3) * (middle left)
reveals the containing term’s disassembly into its constituent
tiles; similarly, the selection) (lower left) reveals the containing
tile’s disassembly into its shards, i.e. its matching delimiters.

After insertion or deletion, syntactic obligations are generated
to ensure eventual reassembly of any remaining lower structures.
This bookkeeping is managed and presented by two independent
subsystems operating at distinct levels of the structural strata.

1) The backpack scaffolds reassembly from shards to tiles
by managing matching delimiter obligations, presenting
these obligations in a pop-up stack attached to the cursor,
as depicted in the lower right of Fig. 2.

2) The grouter scaffolds reassembly of tiles into terms, man-
aging multiplicity obligations by inserting and removing
grout. Grout are generated based on the requirements
of neighboring tiles, which are shaped on either end
with a concave or convex tip to indicate whether or not,
respectively, delimits a child operand. Grout generalize
holes to support both missing terms (<1) and adjacent
terms (>1); for example, the upper right of Fig. 2 shows a
convex piece of grout standing in for the missing operand
3, as well as a concave piece of grout connecting the
former operands of the missing operator *.

We have implemented tile-based editing in teen tylr1,
which is the source of all screenshots in this paper. After
describing related work (Sec. II) and introducing the design
of teen tylr in more detail (Sec. III), we present the results
(Sec. V) of a lab study (Sec. IV) comparing text editing, MPS,
and teen tylr on structurally complex program editing tasks.
We found that the problems of selection expressivity, delimiter
matching, and multiplicity helped explain the most common
breakdowns participants encountered with MPS. We further
observed that teen tylr resolved the selection expressivity
and multiplicity problems, while our design of the backpack
mitigates but incompletely resolves the matching problem.
Nevertheless, we found that participants achieved competitive
performance using teen tylr compared to text on most tasks
and expressed largely positive sentiments toward its feature
set. We conclude with a discussion of design implications for
future code editors and parsers.

II. RELATED WORK

teen tylr continues a long history of structure editor design,
dating back to the Cornell Program Synthesizer in 1981 [18].

Much of this prior work has been on strictly tree-structured
editing, which as discussed in Sec. I suffers from several
problems rooted in the tension between textual projections
and tree-structured editing. This approach nevertheless persists
in present-day designs, notably including JetBrains MPS [3].
MPS is a state-of-the-art structure editor generator whose
generated instances project the program tree to a caret-
navigated textual form. Editor behavior is customizable, both by

1teen tylr is the successor to tiny tylr, which was introduced in a
preliminary workshop paper [17]. This paper substantially refines that early
design and presents new empirical evaluation.

expression e ::= n | x | (e) | [e(; e)∗] m e(e)
m e * e | e / e m e + e | e - e
m e |> e m e(, e)+ m fun p -> e
| let p = e in e | if e then e else e

pattern p ::= x m p(, p)+

Fig. 3: The concrete syntax of Camel, a simple expression-
oriented language we designed for our lab study. Camel is a
near-subset of OCaml expressions [20] and patterns [21]—the
single deviation, postfix parentheses instead of infix space
for function application, was to accommodate comparison
with MPS, which has limited support for whitespace-based
syntax. The operator m indicates forms to its left have greater
precedence than those to its right.

modifying the language grammar and by implementing hooks
that modify the program tree when triggered, often for the
purpose of easing linear interactions with the textual projection.
These customizations can get quite varied and complex when
implemented directly, especially when dealing with issues of
operator precedence and associativity, so the most common
editing patterns are codified in a domain-specific language
called grammar cells [19].

This work presents a detailed comparison of teen tylr
with an MPS editor configured with grammar cells (as well
as a text editor). Prior work on structure editing focuses its
efforts on statement-based languages, where the sequential
syntactic structure of statement blocks alleviates some of the
awkwardness of strictly tree-structured editing. The problem
remains, however, at the typically expression-structured leaves
of the program tree. While additional mitigations such as
grammar cells exist, they are limited to an ad hoc collection
of editing patterns—e.g. left-to-right insertion of single-token
infix operator sequences—leading to the usability problems
with selection and deletion described in Sec. I, and providing
no assistance when modifying more complicated expression
structures. The present work aims to fill these gaps. Specifically,
in our study (Sec. IV), we configured both teen tylr and MPS
to operate on an OCaml-like expression-oriented syntax we
dub Camel, whose concrete syntax is given in Fig. 3, and
evaluated them on program editing tasks involving complex
hierarchies and modifications.

In this work, we focus on keyboard-driven text-like structure
editing in order to capitalize on the literacy and keyboard skills
of experienced programmers. However, mouse-driven block-
based editors like Scratch [2], which are used mainly by novices
and end-users, suffer from variants of the same problems
described for keyboard-driven editors. Block outlines may
provide visual justification for limited selection expressivity,
but the limitation remains. In a user study of block-based
editing involving large refactoring tasks [13], Holwerda and
Hermans elicited post-task user responses on the cognitive
dimensions [15] of block-based editing and found that viscosity
was the most commented-on dimension with 24 remarks. Half

(12) were positive, a majority of which were about the ease
of refactoring when the selected elements corresponded to
complete syntactic terms. Of the negative half (12), half (6)
were about the difficulty of refactoring when the desired
selection does not correspond to a complete term. These results
suggest that problems like selection expressivity and delimiter
matching remain important usability issues for structure editors,
independent of the visualization scheme or input modality.

On the other hand, block-based editors sidestep the mul-
tiplicity problem because any number of disjoint structures
may co-exist in their canvas-based interfaces, at the cost of
inefficient mouse-driven interaction [22]. Some researchers
have proposed but not evaluated designs for augmenting block-
based editors with keyboard interaction [12] and extending
caret navigation to arbitrarily arranged structures [23]. Block-
based editors also suffer from low visual information density
[13] because all blocks are shown at once and grow in size as
they nest. In contrast, teen tylr’s decorations appear locally
to the cursor and do not take up additional space beyond the
underlying text.

Some structure editors [18, 24] employ hybrid editing models,
using structural editing for large syntactic forms while deferring
to text editing entirely at the leaves. This approach loses the
benefits of structure editing at those levels, e.g. the gap problem
must again be confronted by downstream tools. Moreover, while
arbitrary text selections are possible within a text leaf, they
cannot extend beyond those bounds and partially select any
strictly structural forms.

Gradual structure editing was conceptually inspired in part
by gradual typing [25], which observes that users often want to
leave a program partially well-typed, with holes in type position,
in exchange for partial runtime feedback. Similarly, gradual
structure editing leaves a program partially well-structured
(e.g. when teen tylr’s backpack is non-empty or the program
contains grout) to support partial semantic feedback. This work
focuses on the usability aspects of gradual structure editing,
leaving a full treatment of semantic aspects to future work.
We continue discussing these ideas in Sec. VI, particularly in
connection to error-handling parsers, which similarly navigate
trade-offs between usability, structure, and semantics.

III. DESIGN OVERVIEW

We now give an example-driven overview of tile-based edit-
ing using teen tylr. Fig. 4 shows a Camel program we asked
our study participants to transcribe and subsequently modify,
and depicts how one participant completed the modification.
We will describe different parts of this edit sequence in more
detail in this section as we introduce teen tylr’s features.

A. Terms, Tiles, Shards

Fig. 5a depicts a composite of teen tylr edit states with
its cursor in various positions. At each position, when there is
nothing selected, teen tylr highlights the smallest containing
term. Each term is made up of a set of matching shards, the
term’s hexagonally shaped delimiters, and the delimited child
terms, outlined to the left or bottom depending on their layout.

Fig. 4: A pair of editing tasks we assigned our lab study participants, consisting of a transcription task (Panel A) followed
by a modification task (Panel D), and the edit sequence by which participant P9 completed the modification task using teen
tylr (Panels B & C). Due to space constraints, the variable references center and p and the argument to sqrt in Panels A
& D are elided in Panels B & C. In Panel B, P9 begins binding a new variable dist (B.1-3) to a newly inserted function
taking arguments p1 and p2 (B.4-6). Subsequently, in Panel C, P9 selects and cuts the sqrt expression and the two preceding
let-lines (C.7-9), pastes them above the original function (C.9-11), and completes the let-binding for dist with the concluding
delimiter in (C.11-12). Finally, not shown, they modify the variable references center and p to p1 and p2 and inserted a call
to the newly defined dist function to arrive at Panel D.

(a) Nested terms indicated by teen tylr at various cursor positions.

(b) A sequence of tiles produced by disassembling the function term.

Fig. 5: Terms (a) and tiles (b) annotated with green borders.

For example, the outermost indicated function term in Fig. 5a
highlights its shards fun and -> and outlines its argument
pattern and body.

Selecting the function term reveals its disassembly into a
sequence of tiles, shown in Fig. 5b. Tiles are, collectively, in
one-to-one correspondence with terms: each tile consists of
the term’s shards and the children they bidelimit (delimit on
both left and right). For example, the function tile includes the

shards fun and -> and the bidelimited pattern center, p but
does not include the function body, because it is not delimited
on the right. Instead, the body’s tiles are simply adjacent to
the function header in the tile sequence.

Tiles model unassociated operator sequences, where each
tile is shaped at its tips to indicate whether its an 〈operand〉,
〈prefix〈 operator, 〉postfix〉 operator, or 〉infix〈 operator. While
contemporary structure editors like MPS make use of this
sequential structure to ease linear insertion, they do so
emphemerally, such that the user cannot subsequently select
arbitrary subsequences after insertion. teen tylr resolves this
limitation by directly manifesting the sequential structure in
the edit state as needed. Edit state C.8 in Fig. 4 shows P9
using this capability to select the two let-bindings without
their concluding body.

B. Terms
 Tiles + Grout

Via operator-precedence parsing, a sequence of tiles reassem-
bles into a valid term if and only if the tiles fit together
sequentially into a convex hexagon; that is:
(1) consecutive tiles fit together, i.e. one tile’s convex tip

meets the concave tip of the other; and
(2) tiles at the ends have convex outer tips.
In order to maintain these conditions of fit and ensure proper
term reassembly, teen tylr is equipped with a scaffolding
system we dub the grouter. After each user modification, the

grouter inspects the modification site and inserts or removes
system-privileged structures, collectively called grout, that act
as connecting glue between otherwise ill-fitting tiles.

Convex grout succeed the familiar concept of holes in
traditional structure editing, i.e. they handle the situation where
a term is expected but none is found. For example, when
P9 selects and cuts the sqrt expression in C.7-8 of Fig. 4,
the grouter leaves behind a convex grout piece in its place.
Meanwhile, concave grout handle the situation when more
than one is found, thereby addressing the multiplicity problem.
For example, when P9 pastes the sqrt expression in C.10-
11, the grouter inserts a concave grout piece to temporarily
buffer the two terms on either side, which P9 subsequently
replaces with the in shard in C.12. Concave grout also make it
straightforward to define minimal, local deletions: recall how,
in the upper right of Fig. 2, teen tylr is able to preserve both
orphaned children (2 + 3) and 4 upon removing their parent
*, unlike MPS which could save at most one.

C. Tiles
 Shards + Backpack

Tiles may be further disassembled into their constituent
shards, whose subsequent reassembly is guided by a second
system called the backpack. The backpack succeeds the familiar
clipboard, but extended in a few distinct ways. Two differences
are most immediate. First, it is visible—edit state C.11 in Fig. 4
shows how it appears as a yellow “balloon” tied to the cursor.
Second, it can carry multiple items, organized into a stack—for
example, edit states B.1-6 show how the backpack grows and
shrinks as P9 inserts shard-by-shard, while C.7-9 show how
P9 used the backpack to pick up both the sqrt expression as
well as the two preceding let-bindings.

The backpack is additionally co-managed by teen tylr
to ensure that tiles are well-nested, and that freshly inserted
shards are not left unmatched. Consider the edit sequence
in Panel B of Fig. 4. When P9 inserts the first shard let
(B.1), teen tylr recognizes it as a keyword and populates
the backpack with its matching shards = and in. After typing
dist (B.2), P9 puts down the head shard = (B.3) and goes
on to insert the function tile (B.4-6), again supported by the
backpack, emerging carrying the final obligatory shard in.
When they subsequently move inside another tile to select the
sqrt expression in C.7, the backpack turns transparent and
inactive, indicating that it would be structurally invalid to put
down the in there.

This last example in C.7 reveals an overly conservative
limitation of our current tile-based editing ontology, which is
that a tile’s shards are permanently matched and cannot be
exchanged with another tile’s shards, even a tile of the same
form. One could imagine a variation of our system that permits
pasting the in-shard in C.7, matching it to let r =, while the
in-shard originally matched to let r = is re-matched to let
dist =. Our study revealed that this indeed posed a significant
remaining usability problem (Sec. V-B), and we discuss lifting
this limitation in Sec. VI.

IV. LAB STUDY

We sought to empirically investigate the effect of the
selection, multiplicity, and matching problems in a term-based
editor, as well as the impact on user experience when those
problems are mitigated in a tile-based editor. To do so, we ran
a within-subjects lab study in which participants completed a
series of short program editing tasks using VS Code, a text
editor; a baseline term-based editor we configured with MPS;
and teen tylr. We had the following questions:

Q1 When first-time users attempt structurally complex mod-
ifications with a term- or tile-based editor, how does
editor choice impact completion time, mental load, and
code reuse, relative to a text editor?

Q2 What mistakes and inefficiencies do first-time users
experience with a term- or tile-based editor? What aspects
do they find most frustrating?

Q3 What aspects of term- and tile-based editing do first-time
users find most empowering or appealing?

A. Participants

Because our study tasks involved editing programs written in
an expression-oriented language, we sought participants with
some prior experience with such languages. We recruited 10
participants P0-P9 (8 male, 1 female, 1 unstated; ages 19-31
years, median 23.5 years) by posting on Twitter and subreddits
for OCaml (r/ocaml) and the authors’ institution, as well as
emailing students recently enrolled in the undergraduate pro-
gramming languages course there. Most participants reported
substantial experience with expression-oriented languages (0.3-
10 years, median 3.5 years). Eight participants had some
prior experience with structured editing interfaces, such as
Scratch [2] and ParEdit [26]; two of the eight had designed
and implemented their own structure editors. Each participant
was compensated $40 for a 90-minute session of study tasks
followed by a 10-minute exit survey.

B. Tasks & Editors

The study tasks involved small program editing tasks in
Camel, the expression-oriented language introduced in Fig. 3.
Fig. 4 and Fig. 6 together show the six editing tasks participants
completed with each editor, organized into three pairs: circle,
line, and transforms. Each pair consisted of a transcription
task, where the participant transcribed a Camel program
from scratch; followed by a modification task, where the
participant modified their transcribed program (or variation
thereof in the case of line) to a given goal program. We
designed our modification tasks to involve complex code
restructuring patterns one may encounter in larger-scale settings.
We intentionally chose non-minimal starting programs so as
to disincentivize wholesale deletion and re-transcription in
modification tasks.

We asked participants to complete the tasks with three
different editors: VS Code, JetBrains MPS, and teen tylr.
We configured VS Code to syntax-highlight Camel code and
otherwise disabled other extensions. We configured MPS with

Fig. 6: Transcription-modification task pairs line and
transforms. See Fig. 4 for the third pair circle.

its grammar cells system (described in Sec. II) to operate
on Camel programs, as shown in screenshots on the left.

Grammar cells enable some familar
linear editing patterns, e.g. one
may type the keyword let as de-
picted in the top half to insert a
new let-binding above the others.
Other operations, such as bind-
ing an existing expression to a
new variable, require selecting the
expression and invoking MPS’s
“Surround with” menu as depicted
in the bottom half; alternatively,
one may cut the selection, insert
the let-expression, and paste back
the selection at the desired location.

Our implementation of teen tylr at the time of the study
largely followed our presentation in Sec. III, except that we
had not fully implemented the visual design for selections:
selected ranges were highlighted without showing their internal
make-up of tiles and shards. Moreover, at the time, teen tylr
did not support mouse input. We discuss the potential impact
of these limitations in Sec. V-D.

C. Procedure

We conducted the study remotely and recorded participants’
screens. Each session consisted of three components, one for
each editor. Each component consisted of a 10-minute tutorial
portion followed by the three task pairs in a randomized order.

Every participant started with the VS Code component.
We used the tutorial portion of this component to introduce
participants to Camel and to verify they understood its term
structure before proceeding to the structure editing components.
Specifically, as we introduced Camel’s syntax, we asked

participants to parenthesize all subterms in a sample program
that included all of Camel’s syntactic forms. While this
imposed learning effects on task performance in the subsequent
components, there is a strong counteracting effect in the much
greater familiarity and skill participants had with text editing
compared to MPS and teen tylr.

Participants were evenly split between different orders for
the subsequent MPS and teen tylr components. Both tutorials
covered the basics of expression construction; automatic
hole/grout insertion and removal; and selection and cut-and-
paste capabilities. The MPS tutorial additionally covered the
different approaches to inserting and deleting expression forms
as supported by grammar cells or otherwise using the “Surround
With” menu. The teen tylr tutorial additionally noted the
backpack’s enforcement of permanent shard matching.

We sought to distinguish the time spent figuring out how
to complete a task from the time spent performing the edits,
as well as minimize mistakes caused by misunderstanding of
program structure, so we asked participants to plan their edits
before completing each task—this preparation time additionally
served as an objective complement to their subjective reports of
mental load. When preparing for modification tasks, participants
were encouraged to make selections in the starting code to
verify their understanding of selectable structures. We suggested
participants take up to 1 minute to prepare for transcription
tasks and up to 2 minutes for modification tasks, but did not
enforce these limits. We asked participants to complete each
task as quickly and accurately as they comfortably could.

After each component, participants were asked to reflect
on their experience with the editor and to compare it with
any previous editors. Finally, after completing all components,
participants completed a 10-minute exit survey.

V. RESULTS

The lab study, administered by the second author, produced
roughly 15 total hours of screen-recorded video. The first author
segmented and reviewed the preparation and task portions
(4 hours) of these recordings in detail to study participants’
editing patterns, infer high-level intent, and identify mistakes.
Preparation time was measured as starting when participants
started reading each task description and ending when they said
they were ready to begin, minus any time spent on dialogue
(e.g. to ask clarifying questions); task completion time was
measured as starting when the administrator gave a cue to
begin and ending when the participant said they were done.
Intent was rarely ambiguous given both knowledge of the editor
clipboard state, always preceded by a visible selection, as well
as the highly constrained nature of the tasks. Mistakes were
identified by subsequent backtracking via undo and voiced
expressions of uncertainty or regret.

Section V-A summarizes our quantitative results. After noting
likely effects and patterns, we elaborate on specific causes in
Sec. V-B and V-C.

A. Completion Times, Mental Load, Code Reuse (Q1)
Given known limitations of null hypothesis significance

testing [27], we base our analyses of time measures on

Fig. 7: Dot plots overlaid with 95% confidence intervals
summarizing how long participants took to prepare for and
complete tasks with each editor. Each dot represents an
individual participant measure. The top half shows the raw task
times; the bottom half shows the relative slowdowns/speedups
participants exhibited on each task using teen tylr compared
to the other two editors. Confidence was calculated with the
log of both measures to correct for positive skew.

estimated effect sizes with confidence intervals [28]. Fig. 7
summarizes how long participants took to prepare for and
complete the tasks with each editor, and how these repeated
measures compare as ratios between teen tylr and the other
two editors respectively. P1 encountered a crash when using
teen tylr to modify the circle program, so we discarded
this measure and its corresponding ratios. We also omitted
transcription preparation times because participants generally
took no additional time beyond reading the task description.

We observed quite similar transcription performance between
editor pairs (tylr/Code and tylr/MPS) across the three tasks:
all six estimates fall within relatively precise bounds ([0.8, 1.5]),
with all but one (tylr/Code on transforms) overlapping with
equal performance. These results are unsurprising given that all
three editors facilitate familiar left-to-right transcription flows.

On the other hand, our results show that the choice of editor

Fig. 8: Box plots summarizing post-task survey responses.

had clear impact on modification preparation and performance,
despite more imprecise estimates. In the case of tylr/Code,
our estimates suggest some possible slowdown in both prepa-
ration (1.42, [1.02, 1.98]) and performance (1.42, [1.04, 1.93])
for circle, while remaining inconclusive as to the effect
direction for line and transforms. Meanwhile, our estimates
for tylr/MPS suggest speedups in both preparation and
performance on line (0.73, [0.55, 0.97] and 0.68, [0.47, 0.98])
and transforms (0.47, [0.25, 0.89] and 0.21, [0.12, 0.37]), es-
pecially the latter.

These patterns were mirrored in participants’ subjective
responses to our post-task survey, summarized in Fig. 8. Plot
B shows that median participants felt that all three editors
were at least somewhat efficient—perhaps due to the similar
transcription performance across editors—though with more
disagreement in the case of MPS. On the other hand, correlating
to the observed effects on preparation, Plot C shows they felt
that teen tylr was much less mentally demanding to use
than MPS, while still more demanding than VS Code. These
patterns persist across their opinions about the predictability of
different edit operations (Plots E-G) and how much they felt
they had to delete and re-insert code when modifying (Plot D),

Fig. 9: Heat maps summarizing code reuse in the modification tasks, measured by the number of participants that inserted via
typing, rather than cutting and pasting, each token in the goal state. Delimiters auto-inserted by MPS are excluded.

i.e. how much difficulty they had reusing existing code. Plot A
suggests that participants overall preferred using VS Code and
teen tylr over MPS, but with wide divergence in opinions
in the case of teen tylr.

Fig. 9 complements participants’ subjective responses about
code reuse with objective measures on the modification tasks.
We observed quite similar patterns of reuse between teen tylr
and VS Code, though with the subtle difference that reuse of
matching shards in teen tylr are strictly correlated due to
the backpack enforcing lifelong matching (as discussed in
Sec. III-C). We also observed overall less reuse with MPS than
the other two editors. P0 opted not to reuse any starting code
for line with MPS, instead deleting it and transcribing the
goal state; P8 did the same for transforms. Some participants
were forced to rewrite variable references like center in line
on account of MPS’s strict binding requirements, which would
lead to variable references disappearing from the clipboard
when they deleted the original binding sites. Other notable
differences include the concluding function in circle; and
two of the pipe operators in transforms, as well as the first
and third operands in the pipeline.

B. Mistakes, Inefficiencies, Frustrations (Q2)

The results of Sec. V-A indicate that participants struggled
with MPS because of how mentally demanding it was to
perform complex modifications, with notable impacts on
both task performance and code reuse even after an initial
planning phase. P2 wrote, “MPS was EXTREMELY cognitively
demanding to me; it felt like I was solving tree-manipulating
puzzles the entire time I used it.” We found that the most

common mistakes and frustrations with MPS related to the
three usability problems we described in Sec. I.

The selection expressivity problem was mitigated by the
preparation phases of our study procedure, but there remained
some cases where participants began modification tasks with
mistaken interpretations of the initial expression structure.
For example, P0, P7, and P8 started modifying transforms
thinking they could select individual lines, only to discover
their selections rounded up to the nearest prefix of lines.
Five participants (P1, P3, P5, P7, P9) mentioned inexpressive
selections when asked about frustrating aspects of MPS.

The most common class of mistakes related to the delimiter
matching problem, in particular when inserting and deleting
multifix forms such as let = in and if
then else . When inserting, participants frequently
misremembered whether to rely on the side-wrapping behavior
via grammar cells or to use the Surround With menu, forcing
them subsequently to amend the mistake by either backtracking
and applying the alternative action, or else cutting and pasting
the miswrapped child into its proper slot. We observed three
participants (P0-1, P9) make this mistake when modifying
circle, six (P2-4, P5-7, P9) when modifying line. Similarly,
when deleting, some participants misremembered whether to
rely on the side-unwrapping behavior of MPS’s grammar cells,
leading to accidental overdeletion of a bidelimited child; we
observed three participants (P5, P7, P9) make this mistake when
modifying line. Four participants (P1, P4-5, P7) referred to
these delimiter matching issues as most frustrating.

Some avoided these matching-related decisions by conser-
vatively stashing the child to be wrapped/unwrapped in the
clipboard before inserting/deleting, a more uniform but less

efficient manuever when side-wrapping/unwrapping is possible.
These maneuvers led three participants (P1, P4-5) to liken the
experience to the Towers of Hanoi, a puzzle commonly used
to exercise recursive problem solving.

Meanwhile, the multiplicity problem led to breakdowns
when pasting content with MPS, where pasting to the left
or right of a term overwrites it. While we explicitly noted this
behavior in our tutorial, it still occasionally led to surprises. For
example, when modifying transforms, P7 cut the expression
spanning the first three lines of the start state, re-inserted
shapes in its place, and pasted the cut expression at the end
of the last transformation (map(dilate(5))), unintentionally
overwriting the transformation and having to re-insert it. Overall
we observed two participants (P0, P9) make this mistake when
modifying circle, one (P7) when modifying line, and four
(P0-1, P4, P7) when modifying transforms.

Others were more cautious about this overwriting behavior,
but instead reported that taking this care was mentally taxing,
especially given the combined pressures of the multiplicity
and matching problems on the clipboard. P2 wrote of MPS:
“the worst part by far is the lack of ‘scratch’ workspace; in
VS Code I can keep syntactically invalid code in the file, and
in tylr I can keep it in the backpack. In MPS I could only
keep it in a single clipboard or some ad hoc location in the
AST.” As a result, the most successful participants were those
who adopted a general strategy of inserting before deleting in
order to expand their available scratch space for subsequent
clipboard-dependent modifications.

Participants using teen tylr did not experience the same
scarcity of scratch space as with MPS: its flexible selections
reduced the number of selections necessary, concave grout
made it possible to paste without overwriting, and the backpack
accommodated any number of remaining selection needs.

On the other hand, several had trouble with the backpack
enforcing well-nested and permanent shard matching, as
described in Sec. III-C. For example, P0 started modifying
line by selecting the third and fourth lines let mark = \n fun
center -> and attempting to paste them above the second line
if square then, but could not on account of the remaining
in shard left behind in the then-branch—completing such a
maneuver requires cutting the in shard as well before pasting.
Despite this being mentioned in our tutorial, six participants
(P0-1, P3, P5, P7, P9) encountered this issue when modifying
line, one (P4) when modifying circle, and only one (P3 on
line) successfully proceeded by picking up additional shards
rather than backtracking and re-strategizing. Seven participants
(P0-2, P4-5, P7-8) mentioned this issue when asked what was
most frustrating about teen tylr.

This issue could get particularly confusing or frustrating
when rearranging shards of tiles of the same form, especially
given the lack of visual distinction (e.g. using color) between
the different pairings. Some felt that this ran counter to their
preferred workflows with text—for example, P2 mentioned,
“I commonly ‘reuse’ if/else tokens from nested/sequential if
expressions by deleting, say, the else branch of the first one and
the then branch of the second one.”—which we also observed

in code reuse patterns for VS Code in Fig. 9. These issues,
combined with teen tylr’s otherwise text-like experience, led
P4 to describe it as feeling like “an uncanny valley between
structured editing and text... teen tylr mostly felt like a text
editor... but it also isn’t quite text—fixing parenthesization
errors required that I think in terms of structure.”

C. Empowering or Appealing (Q3)

Despite these issues with the backpack, several participants
expressed positive sentiment toward its other aspects when
asked about empowering or appealing aspects of teen tylr.
P0 wrote, “The backpack was pretty cool, and I definitely think
it’s something I would make use of.” P2 enjoyed not needing
to “worry about how to keep things in ‘scratch’ space like
in MPS (which is huge, to me)”. P9 appreciated the ability
to “cut multiple things at once and then paste it later, saving
me time and context switch of going back and forth to copy
and paste.” A few participants expressed wishing to have the
backpack available in MPS.

Others liked teen tylr’s visual design and grouting system
based on convex/concave tips. P7 enjoyed the “curved cursor”,
P1 the “arms on operators, concave and convex carets(!)”. P2
appreciated having “the benefit of automatic hole insertion
(which is also great)”, while P4 enjoyed the “friendly feedback”
of the grouting system: “Seeing unexpected placeholders
sometimes pointed out a syntax mistake I had made, in a
more pleasant way than a traditional squiggly red underline.”

When asked about empowering or appealing aspects of MPS,
four participants (P1-4) expressed appreciation for the efficiency
of selection when it aligned with their goals. Another four (P1,
P4-5, P9) cited the ability to jump to empty holes using the
Tab key (which had not yet been implemented in teen tylr at
the time of the study). Others (P1, P3-4, P6-7) appreciated the
way MPS managed details like inserting matching delimiters
and formatting whitespace (although others (P0, P8) disliked
this lack of control). P1 appreciated how these features added
up to an overall “clicky” experience.

D. Limitations

Our study had several limitations. Our results were affected
by teen tylr’s prototypal nature: for example, unlike the other
two editors, teen tylr did not support mouse input at the
time so we asked participants to limit themselves to keyboard
input, at which some expressed unfamiliarity in the case of
selection. Participants had only 30 minutes to get introduced
to and complete tasks with MPS and teen tylr respectively,
so our results do not reflect optimal performance or behavior,
but rather trends and obstacles in first-time use. The editing
tasks were few, small, and synthetic, particularly the fact that
participants were expected to reach a given goal state verbatim
and asked to plan their edits before performing them—while
these constraints made it possible for us to make detailed
comparisons of the editors, they deviate from typical editing
practices in the way they split user attention between the goal
and the edit state, as well as prevent natural interleaving of
problem solving, planning, and editing. Because all participants

started with the VS Code component and completed the same
tasks in every component, learning effects of the tasks impact
our comparisons between VS Code and the other two editors—
on the other hand, they are counteracted by participants’ vastly
greater experience with text editing. Finally, participants were
aware that the authors had designed and implemented teen
tylr, which is known to contribute to response bias [29].

It is possible to engineer more ergonomic structure editors
with MPS than the one we built and evaluated in this study
by adjusting the language grammar to improve selection
expressivity. Our editor directly implemented the expression
structure of Camel, which for example makes it impossible to
select a let-binding independent of its conclusion (e.g. let x
= 1 in in let x = 1 in x); this would be possible if instead
we introduced a distinct expression block sort consisting of a
sequence of let bindings and expression lines, each individually
selectable in this form. We view such grammatical adjustments
as ad hoc approximations of the generic disassembly of terms
into tiles in the tile-based setting, and sought to focus our
comparison on pure term- and tile-based editing.

VI. DISCUSSION AND FUTURE WORK

While our study was small and not necessarily reflective
of more proficient use, we think it contributes new detail and
insight into the general problem of structure editor usability,
especially in the context of keyboard-driven editing of nested
expression structures. Our decomposition of the problem into se-
lection expressivity, multiplicity, and delimiter matching proved
useful in explaining common breakdowns our participants
encountered when performing complex modification tasks with
MPS. Particularly interesting was the interaction between the
multiplicity and matching problems, which in their competing
demands for limited clipboard space led to less code reuse and
greater mental load with MPS. This phenomenon suggests that
traditional keyboard-driven structure editors, whether gradual or
not, might substantially improve usability simply by increasing
the number of available slots in the clipboard system. Our study
additionally highlighted the limitations of MPS’s grammar cells
system, particularly in the way they bifurcated insertion and
deletion flows for larger mixfix forms common in expression-
oriented languages like OCaml.

Our study further suggested that our design of teen tylr
successfully mitigated most but not all of these issues, leading
to improved modification performance, greater code reuse,
and lower reports of mental load compared to MPS. Our
participants expressed appreciation for teen tylr’s greater
selection flexibility, the scratch space made available by the
backpack, and its overall visual indications of expected structure
via convex/concave tips and grout. On the other hand, several
were surprised and confused by the permanent matching of
shards, which stood in the way of delimiter re-matching
workflows they undertook with VS Code. Some also wished
for a more structured feel to the editing experience, which
we attribute to lacking features at the time of the study, such
as system-managed whitespace and tabbing to holes, rather
than any fundamental limitation of our design. teen tylr is

so named because of these remaining limitations, which we
construe as an awkward adolescent phase in its evolution from
strict structure editing to increasingly text-like editing.

Lifting these limitations
in ongoing work has led
us to simplify the tile-based
editing ontology, from the
one in Fig. 2 to something
closer to the one on the left.
Here, we rid ourselves of
the previous concept of tiles
as intermediate structures of

matching shards, and rename shards as tiles in order to dispel
the physical metaphor that they are fractured components of
a particular parent entity and should be reassembled as such.
Meanwhile, the grouter subsumes the role previously handled
by the backpack, such that grout elements represent both
multiplicity and delimiter matching obligations—in the latter
case, they would be additionally decorated with transparent
text of the missing delimiters. The backpack may continue to
serve as a visual clipboard stack given its positive feedback, but
would no longer be system-managed or relevant to maintaining
structural integrity. This new framing seems suspiciously close
to regular text parsing, which raises the question: are we back
where we started? Should we have saved our efforts on the
notorious impracticalities of structure editing and instead started
with the well-established methods of text parsing?

We think our design efforts in the structure editing realm
provide unique guidance for future parser and editor designs,
in ways not emphasized by current parsing literature. Error-
handling parsers are kin to structure editors in their aim to
maintain continuous maximal structure for downstream analyses
and editor services, but typically define the problem starting
from simple blackbox assumptions about the textual interfaces
they inhabit, leading to major shortcomings in user experience.
Error-handling methods consider strictly textual corrections, of
which there can be many possibilities even of minimal size—
the burden of choice is then passed on to the programmer
[30], or otherwise one is chosen using ad hoc heuristics [31].
Morever, if a heuristic choice is made, it is typically invisible
to the programmer, leaving them only indirect clues in the
behavior of downstream editor services. The missing piece, we
believe, is a complementary system of user-facing obligations,
much like the one developed in this work, that can stand in for
many possible completions while explicitly scaffolding nearby
structures. Such a system would be easily integrated with the
graphical capabilities of modern text-based IDEs.

Another aspect of teen tylr’s design not emphasized
in current parsing literature is the maximal assembly and
visualization of gradual structures. While there exists work
on incremental parsing [32], it is only incremental in the sense
that it isolates errors, while parsed structures exist only at the
granularity of complete AST nodes. In ongoing and future
work, we aim to develop general parsing methods for gradual
structures that can be used to structure and visually organize
arbitrary user selections and edit states.

REFERENCES

[1] C. Omar, I. Voysey, M. Hilton, J. Sunshine, C. Le Goues, J. Aldrich,
and M. A. Hammer, “Toward semantic foundations for program editors,”
in Summit on Advances in Programming Languages (SNAPL), 2017.

[2] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch programming language and environment,” ACM Trans.
Comput. Educ., vol. 10, no. 4, Nov. 2010. [Online]. Available:
https://doi.org/10.1145/1868358.1868363

[3] M. Voelter and V. Pech, “Language modularity with the MPS language
workbench,” in 34th International Conference on Software Engineering,
ICSE 2012, June 2-9, 2012, Zurich, Switzerland, M. Glinz, G. C. Murphy,
and M. Pezzè, Eds. IEEE Computer Society, 2012, pp. 1449–1450.
[Online]. Available: https://doi.org/10.1109/ICSE.2012.6227070

[4] L. R. Neal, “Cognition-sensitive design and user modeling
for syntax-directed editors,” SIGCHI Bull., vol. 18, no. 4,
p. 99–102, May 1986. [Online]. Available: https://doi-
org.proxy.lib.umich.edu/10.1145/1165387.30866

[5] D. R. Goldenson and M. B. Lewis, “Fine tuning selection semantics in
a structure editor based programming environment: Some experimental
results,” SIGCHI Bull., vol. 20, no. 2, p. 38–43, Oct. 1988. [Online].
Available: https://doi-org.proxy.lib.umich.edu/10.1145/54386.54400

[6] M. L. Van De Vanter, “Practical language-based editing for software
engineers,” in Software Engineering and Human-Computer Interaction,
R. N. Taylor and J. Coutaz, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 251–267.

[7] B. Lang, “On the usefulness of syntax directed editors,” in Proceedings
of an International Workshop on Advanced Programming Environments.
Berlin, Heidelberg: Springer-Verlag, 1986, p. 47–51.

[8] R. Bahlke and G. Snelting, “Design and structure of a
semantics-based programming environment,” International Journal
of Man-Machine Studies, vol. 37, no. 4, pp. 467–479, 1992,
structure-based editors and environments. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0020737392900056

[9] S. Minör, “Interacting with structure-oriented editors,” Int. J. Man
Mach. Stud., vol. 37, no. 4, pp. 399–418, 1992. [Online]. Available:
https://doi.org/10.1016/0020-7373(92)90002-3

[10] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in Software Language Engineering, B. Combemale,
D. J. Pearce, O. Barais, and J. J. Vinju, Eds. Cham: Springer International
Publishing, 2014, pp. 41–61.

[11] P. Miller, J. Pane, G. Meter, and S. A. Vorthmann, “Evolution of novice
programming environments: The structure editors of Carnegie Mellon
University,” Interact. Learn. Environ., vol. 4, no. 2, pp. 140–158, 1994.
[Online]. Available: https://doi.org/10.1080/1049482940040202

[12] J. Monig, Y. Ohshima, and J. Maloney, “Blocks at your fingertips:
Blurring the line between blocks and text in GP,” in Proceedings
of the 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond), ser. BLOCKS AND BEYOND ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 51–53. [Online]. Available:
http://dx.doi.org/10.1109/BLOCKS.2015.7369001

[13] R. Holwerda and F. Hermans, “A usability analysis of blocks-based pro-
gramming editors using cognitive dimensions,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2018,
pp. 217–225.

[14] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak,
“Learnable programming: Blocks and beyond,” Commun. ACM,
vol. 60, no. 6, p. 72–80, May 2017. [Online]. Available: https://doi-
org.proxy.lib.umich.edu/10.1145/3015455

[15] T. Green and M. Petre, “Usability analysis of vi-
sual programming environments: A ‘cognitive dimensions’
framework,” Journal of Visual Languages and Computing,
vol. 7, no. 2, pp. 131–174, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900099

[16] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund,
“Efficiency of projectional editing: A controlled experiment,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New
York, NY, USA: ACM, 2016, pp. 763–774. [Online]. Available:
http://doi.acm.org/10.1145/2950290.2950315

[17] D. Moon, A. Blinn, and C. Omar, “tylr: A tiny tile-based structure
editor,” in Proceedings of the 7th ACM SIGPLAN International
Workshop on Type-Driven Development, ser. TyDe 2022. New York,

NY, USA: Association for Computing Machinery, 2022, p. 28–37.
[Online]. Available: https://doi.org/10.1145/3546196.3550164

[18] T. Teitelbaum and T. Reps, “The Cornell program synthesizer:
A syntax-directed programming environment,” Commun. ACM,
vol. 24, no. 9, pp. 563–573, Sep. 1981. [Online]. Available:
http://doi.acm.org/10.1145/358746.358755

[19] M. Voelter, T. Szabó, S. Lisson, B. Kolb, S. Erdweg, and T. Berger,
“Efficient development of consistent projectional editors using grammar
cells,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, ser. SLE 2016.
New York, NY, USA: ACM, 2016, pp. 28–40. [Online]. Available:
http://doi.acm.org/10.1145/2997364.2997365

[20] “The OCaml language: Expressions,”
https://v2.ocaml.org/manual/expr.html, accessed: 2023-07-01.

[21] “The OCaml language: Patterns,” https://v2.ocaml.org/manual/patterns.html,
accessed: 2023-07-01.

[22] N. C. C. Brown, M. Kolling, and A. Altadmri, “Position paper: Lack
of keyboard support cripples block-based programming,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), 2015, pp. 59–61.

[23] E. Evans, “A caret for your thoughts: Adapting caret navigation to
visual editors,” https://2023.programming-conference.org/details/px-
2023-papers/1/A-Caret-for-Your-Thoughts-Adapting-Caret-Navigation-
to-Visual-Editors, accessed: 2023-05-05.

[24] M. Kölling, “The Greenfoot programming environment,” ACM Trans.
Comput. Educ., vol. 10, no. 4, Nov. 2010. [Online]. Available:
https://doi.org/10.1145/1868358.1868361

[25] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland,
“Refined criteria for gradual typing,” in 1st Summit on Advances in
Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar,
California, USA, ser. LIPIcs, T. Ball, R. Bodı́k, S. Krishnamurthi,
B. S. Lerner, and G. Morrisett, Eds., vol. 32. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015, pp. 274–293. [Online]. Available:
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[26] T. R. Campbell, “paredit — parenthetical editing in emacs,”
https://paredit.org/, accessed: 2023-05-08.

[27] G. Cumming, “The new statistics: Why and how,” Psychological Science,
vol. 25, no. 1, pp. 7–29, 2014, pMID: 24220629. [Online]. Available:
https://doi.org/10.1177/0956797613504966

[28] G. Cumming and S. Finch, “Inference by eye: Confidence intervals and
how to read pictures of data,” The American Psychologist, vol. 60, pp.
170–80, 02 2005.

[29] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “‘Yours
is better!’: participant response bias in HCI,” in CHI Conference
on Human Factors in Computing Systems, CHI ’12, Austin, TX,
USA - May 05 - 10, 2012, J. A. Konstan, E. H. Chi, and
K. Höök, Eds. ACM, 2012, pp. 1321–1330. [Online]. Available:
https://doi.org/10.1145/2207676.2208589

[30] L. Diekmann and L. Tratt, “Don’t panic! better, fewer, syntax errors for
LR parsers (artifact),” Dagstuhl Artifacts Ser., vol. 6, no. 2, pp. 17:1–17:2,
2020. [Online]. Available: https://doi.org/10.4230/DARTS.6.2.17

[31] S. L. Graham and S. P. Rhodes, “Practical syntactic error recovery,”
Commun. ACM, vol. 18, no. 11, p. 639–650, nov 1975. [Online].
Available: https://doi.org/10.1145/361219.361223

[32] T. A. Wagner and S. L. Graham, “Efficient and flexible incremental
parsing,” ACM Trans. Program. Lang. Syst., vol. 20, no. 5, p. 980–1013,
sep 1998. [Online]. Available: https://doi.org/10.1145/293677.293678

